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Surface estimation can be performed based on position or depth

measurements. We propose a method to fuse both types of measure-

ments. Position measurements are obtained from landmarks on the

surface, i.e., they are fixed to a certain point on the surface. In

contrast, depth measurements reflect the depth measured along a

line emanating from a depth camera and are not fixed to a position

on the surface. The proposed approach uses a mixture of Cartesian

and polar or spherical coordinate to treat both measurement types

accordingly. By doing so, the uncertainties associated with the dif-

ferent measurement types are explicitly considered. The presented

method represents the surface by a spline and is applicable to both

2D and 3D applications. Surface estimation is considered as a re-

cursive filtering problem and standard nonlinear filtering methods

such as the unscented Kalman filter can be used to obtain surface

estimates. We show a thorough evaluation of the proposed approach

in simulations.
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1. INTRODUCTION

Many applications require the reconstruction of sur-

faces based on noisy measurements. For example, in

various medical applications the surface of organs needs

to be reconstructed from measurements that originate

from medical imaging technologies [22], [6], [29], [7].

Surface reconstruction is also a relevant topic in other

areas such as robotics [23] and computer graphics

[22], [11].

A practical application where the presented ap-

proach may be used is intra-operative beating heart

tracking for robot-assisted coronary artery bypass graft.

The idea behind this application has first been intro-

duced by Nakamura et al. in 2001 [24] and can be

summarized as follows. The surgery is carried out by

a robot that is remotely controlled by a surgeon. During

the surgery, the movement of the heart is observed by

sensors and this information is used to control the robot

in such a way that it automatically compensates for the

heart motion. The surgeon is in turn presented with a

stabilized image [17] of the heart and experiences the

illusion of operating on the still heart, which is a sig-

nificantly easier task. Because operating on the beating

heart is very difficult, currently operations are usually

performed on the stopped heart, which incurs significant

disadvantages for the patient’s health, such as a risk of

anemia and cerebral microembolization [16]. In order

to make robot-assisted beating heart surgery feasible,

an accurate reconstruction of the moving heart surface

is required.

Fig. 1. The considered setting: A depth camera observes a

deformable surface (light green) and obtains depth measurements

(red circle) along a line emanating from the camera (red line).

Additionally, some sparse landmarks (dark green) on the surface can

be tracked by other means (e.g., a stereo camera system).

For reconstructing a surface, we consider two differ-

ent types of measurements (see Fig. 1). First, there are

position measurements originating from certain points

located at a fixed positions on the surface. Position mea-

surements are typically obtained from landmarks on the

surface, for example structured regions that allow 3D re-

construction with a stereo camera system. Second, there

are depth measurements that do not originate from a

fixed point on the surface and only depend on the dis-
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Fig. 2. Depth measurements (red circles) and position measurements of a time-varying surface. Notice how the depth measurement is

obtained from different surface points as the surface deforms. (a) Beginning. (b) Middle. (c) End.

tance of a certain point in space to the surface along a

given line. Depth measurements can be obtained from

depth sensors such as time-of-flight (TOF) cameras or

sensors based on structured light such as the Microsoft

Kinect. The difference between position and depth mea-

surements is illustrated in Fig. 2.

While position measurements are typically sparse

but highly accurate, depth measurements tend to be

more plentiful, but less accurate and more suscepti-

ble to noise. On the one hand, stereo camera systems

may have a high resolution, but perform poorly in non-

structured areas. On the other hand, TOF sensors can

handle uniform surface areas, but have comparatively

limited resolution and accuracy. Thus, it is beneficial to

combine both types of measurements in order to achieve

a more accurate and robust reconstruction of the surface

compared to scenarios where only one type of measure-

ment is used. Fusion of information from different types

of sensors allows to alleviate the disadvantages of any

given sensor type.

Many practical applications are not limited to a

static scenario because the sensors and the surface move

relatively to each other. Furthermore, the surface may

deform and change shape over time. Consequently, our

goal is to track surface position and shape over time and

to include new information recursively as it is obtained.

Prior knowledge may be included to predict the future

evolution of the surface.

We now outline our main contribution. In this paper,

we introduce a novel method for surface reconstruction

suitable for both 2D and 3D applications. The proposed

method combines depth and position measurements to

recursively estimate the state of the surface while con-

sidering measurement uncertainties. It does not depend

on a particular choice of sensor and can be employed

in a wide area of applications. Our method is based on

a spline representation of the surface whose parameters

are recursively estimated using nonlinear filtering tech-

niques. Separate measurement equations for depth and

position measurements are derived in order to deal with

their individual characteristics.

1.1. Structure

The paper is structured as follows. In Sec. 2, we give

an overview of previous work in the area of surface re-

construction. The required prerequisites are introduced

in Sec. 3. The presented method is derived for the 2D

case in Sec. 4 and adapted to the 3D case in Sec. 5. We

propose some further enhancements in Sec. 6 and eval-

uate the proposed algorithms in simulations in Sec. 7.

Finally, we form a conclusion in Sec. 8.

Compared to our previous publication [18], we have

significantly extended Sec. 2 to give a more complete

overview of literature on the topic and Sec. 6, where we

give enhancements to the proposed method that allow

the incorporation of angular uncertainties and the use of

approximation rather than interpolation functions. We

have also performed an evaluation of the adaptive addi-

tion of nodes, which is given in Sec. 7. Furthermore, we

now provide additional explanations in various places as

well as a number of supplementary figures to illustrate

the proposed method.

1.2. Notation

We denote vectors by underlined letters x, matrices

by bold letters A, and angles by Greek letters ®.

n number of dimensions (n= 2 or 3)

k time index

p
1
, : : : ,p

m
points in Rn

f1, : : : ,fm function values in R
f(¢) interpolating function

Á(¢) radial basis function

c1, : : : ,cm coefficients in interpolating function

interpolate(p
k
,fk) interpolation algorithm that returns

interpolating function

xk system state in Rq
xek,x

p
k estimated and predicted state

ak(¢) system function

uk system noise with covariance Cuk
l number of landmarks

xa,bk position of landmark a in

dimension b

ŷ
k

position measurements

vk position measurement noise with

covariance Cvk
ẑk depth measurements

wk depth measurement noise with

covariance Cwk
®1, : : : ,®r measurement angles

sk(¢) interpolated surface

struek (¢) true surface
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Á1, : : : ,Ád angles for additional control points

in 2D

(Ái,μi)i=1,:::,d angles for additional control points

in 3D

x1,¤k , : : : ,x
d,¤
k depth of additional control points

¾add initial standard deviation for

additional control points

E¿k (¢) RMSE at given angle over ¿ time

steps ending at k

±1k , : : : ,±
r
k noise in angular domain with

covariance C±k in 2D

(±ik,´
i
k)i=1,:::,r noise in angular domain with

covariance C
±,´
k in 3D

¸ relaxation value for approximation

°1, : : : ,°e evaluation angles

Ek RMSE at evaluation angles

2. RELATED WORK

Traditional methods for surface reconstruction ex-

clusively rely on position measurements. For example,

Hoppe et al. presented a method to reconstruct a surface

based on unorganized points [11]. As a result of the in-

creasingly widespread use of depth cameras, algorithms

exclusively based on depth measurements have been in-

troduced, such as Kinect Fusion [13], [25].

However, approaches that try to combine both types

of measurements are still fairly new. An early approach

was published by Lindner et al. in 2007 [20]. This

approach combines information from a TOF camera and

a binocular camera to obtain a high-resolution colored

point cloud. However, the color information is not used

to obtain a more accurate estimate of the 3D shape of

the observed scene.

Gudmundsson et al. [9] proposed a fusion algorithm

for disparity maps obtained from stereo reconstruction

and depth information obtained by TOF cameras in or-

der to obtain higher quality disparity maps. The fusion is

achieved by converting the TOF depth values to dispari-

ties in the image frames. A more sophisticated approach

to the same problem has been presented by Zhu et al.

in 2011 [32]. It is based on Markov Random Fields

that describe the depth information and can be used to

probabilistically combine measurements from a stereo

camera system and a time-of-flight (TOF) camera. In the

fusion process, the respective uncertainties of both sen-

sor types are considered and their influence is weighted

accordingly.

In 2008, Guan et al. [8] proposed an algorithm to

combine images from several conventional cameras and

a TOF camera for the purpose of 3D object reconstruc-

tion. The conventional cameras are used to provide sil-

houette information and allow construction of the visual

hull, whereas the TOF camera is able to obtain depth

information in areas where concavities occur. A prob-

abilistic space occupancy grid, i.e., a voxel-based ap-

proach was used to obtain the object shape by calculat-

ing iso-probability surfaces with a graph-cut algorithm.

TABLE I

Comparison of fusion approaches.

Method representation stochastic recursive

Lindner [20] RGBD data no no

Gudmundsson [9] disparity map no no

Zhu [32] disparity map yes no

Guan [8] voxel yes no

Groch [7] voxel yes no

proposed spline yes yes

Groch et al. [7] have applied a very similar approach to

a medical application, but they fused stereo disparities

instead of silhouette information.

There are different ways of representing the recon-

structed surface. Depth sensors usually provide depth

maps or point clouds as raw data, but a more sophisti-

cated representation is desired. One common approach

is to use spatial discretization and represent the surface

as voxels [13], [8]. However, voxel-based approaches

typically require a lot of memory and computational

power if a high resolution is to be achieved. Another

common approach is to use triangular meshes [22].

While triangular meshes are usually more computation-

ally efficient than voxels, they require a large number

of triangles to provide a satisfactory reconstruction of

rounded shapes. An alternative is to describe the sur-

face as a spline, which can be stored in a very compact

form as it is uniquely defined by a small number of

control points [19], [2], [1]. Splines are very suitable

for smooth surfaces without rough edges. Unlike vox-

els or triangular meshes, splines can be evaluated at an

arbitrary resolution and still appear smooth. Stochastic

formulations of splines have previously been used by

Brunn et al. [5]. Gaussian processes can also be used to

model uncertain surfaces [26]. In fact, the spline based

interpolation used in the proposed approach could easily

be replaced with a Gaussian process regression.

Furthermore, we have to distinguish between recur-

sive approaches that are able to include new information

as it is obtained and methods that only use information

from a single time step. Kinect Fusion [13] considers

point clouds at consecutive time steps and tries to align

them with the well-known iterative closest point algo-

rithm [4]. The proposed algorithm is also capable of

gaining more information over time because it is based

on nonlinear recursive filtering methods. However, most

approaches in this area are not recursive, i.e., they only

consider a single time step.

An overview of the mentioned approaches is given

in Table I. It should be noted that some approaches

are based on stochastic foundations, e.g., Markov Ran-

dom Fields, whereas others do not explicitly consider

stochastic uncertainties.

3. PREREQUISITES

Before describing the proposed method for surface

reconstruction, we introduce some prerequisites.
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Fig. 3. Example of the interpolation achieved by the presented

algorithm for R! R interpolation, i.e., for n= 1. The control points
are p1, : : : ,p7 = 1,2,3,4,5,6,7 with values f1, : : : ,f7 = 2,2,4,2,2,1,2

and the basis function Á(x) is a thin plate spline.

3.1. Interpolation

Let m 2 N>0, p1, : : : ,pm 2 Rn and f1, : : : ,fm 2 R. The
goal of interpolation is to find a function f : Rn!R
with f(p

i
) = fi for 1· i·m where f is smooth in some

sense. There are various types of interpolation functions.

An overview can be found in [1]. The proposed method

does not depend on a particular choice of interpolation

method. For later use, we define a function

interpolate: ((Rn)m£Rm)! (Rn!R),

(p
1
, : : : ,p

m
;f1, : : : ,fm) 7! f

that maps points p
1
, : : : ,p

m
and values f1, : : : ,fm to their

interpolating function f 2 (Rn!R).
For the purpose of our experiments, we decided to

use Radial Basis Functions (RBF) [6], [2] for interpo-

lation, because they are easy to calculate by solving a

system of linear equations and are applicable for any

dimension n. The interpolating function f is given by

f(p) =

mX
j=1

cj ¢Á(kp¡pjk),

where Á :R¸0!R is the basis function, c1, : : : ,cm 2 R
are weighting coefficients, and k ¢ k is the Euclidean
norm. A popular choice of basis function is the thin

plate spline (TPS):

Á(x) =

½
x2 logx, x > 0

0, x= 0
:

Because the value of log(0) is undefined, we set Á(0) =

limx!0(x
2 log(x)) = 0. The reason why the TPS is com-

monly used as a basis function, is the fact that the inter-

polation function is C1 continuous and that it minimizes

the energy functionalZ 1

¡1

Z 1

¡1

μ
@2f

@x2

¶2
+2

μ
@2f

@x@y

¶2
+

μ
@2f

@y2

¶2
dxdy,

which means that it provides in a certain sense the

smoothest possible interpolation function.

The weighting coefficients c1, : : : ,cm can be obtained

by solving the system of m linear equations

fi =

mX
j=1

cj ¢Á(kpi¡pjk), 1· i·m:

The algorithm is given in Algorithm 1. We show an

example of the interpolation produced by this algorithm

in Fig. 3.

ALGORITHM 1 Interpolation based on RBFs.

Input: radial basis function Á :R¸0!R;
points p1, : : : ,pm 2 Rn;
values f1, : : : ,fm 2 R
Output: interpolation function f :Rn!R

// prepare matrix of RBF values
AÃ (m£m matrix);
for iÃ 1 to m do
for jÃ i to m do
A(i,j)Ã Á(kpi¡pjk);
// A is symmetric
A(j, i)ÃA(i,j);

end

end
// solve A ¢ [c1, : : :cm]T = [f1, : : : ,fm]T
[c1, : : :cm]

TÃA¡1[f1, : : : ,fm]
T;

// obtain interpolation function
fÃ (p 7!Pm

j=1 cj ¢Á(kp¡pjk));
return f;

3.2. Polar and Spherical Coordinates

While many common approaches rely on Cartesian

coordinates exclusively, we use polar coordinates (in

2D) and spherical coordinates (in 3D) to simplify cer-

tain computations similar to [3]. The transformation be-

tween Cartesian and polar coordinates is given by

x= rcos(Á),

y = r sin(Á),

and

r = k(x,y)Tk=
p
x2 + y2,

Á= atan2(y,x):

For spherical coordinates, there are several common

definitions. We use the convention

x= rcos(μ)cos(Á),

y = rcos(μ)sin(Á),

z = r sin(μ),

and

r = k(x,y,z)Tk=
p
x2 + y2 + z2,

Á= atan2(y,x),

μ = arcsin(z=r):
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Fig. 4. Spherical coordinates as used in this paper.

An illustration of the meaning of Á and μ is given in

Fig. 4. Be aware that we use μ as the angle between

the x-y-plane and the vector (x,y,z)T whereas some

common definitions use μ as the angle between the z-

axis and the (x,y,z)T vector. It also deserves mentioning

that some authors reverse the roles of Á and μ.

3.3. System and State Representation

For describing the estimate of the reconstructed

surface at time step k, we use the state vector xek 2 Rq.
We assume the state to be Gaussian-distributed with

covariance matrix Cek. A system model

x
p
k+1 = ak(x

e
k)+ uk

with system function ak : Rq!Rq and additive zero-
mean Gaussian noise uk »N (0,Cuk ) can be used to

describe the evolution of the state xk.

The structure of the system with the estimator is

depicted in Fig. 5. If the system model is linear, the

Kalman filter formulas [15] can be used to perform the

prediction step. Otherwise a nonlinear filter such as the

Fig. 5. The structure of the system and the recursive estimator. We propose two separate measurement updates for depth and

position measurements.

unscented Kalman filter (UKF, [14]) can be applied.

Note that even if the system model is linear, we still need

a nonlinear filter for the depth measurement update.

If the system does not follow any known dynamics,

a random walk model may be used. In static cases,

where the surface does not change over time, prediction

can be omitted. As our approach for estimating the

reconstructed surface is independent of the particular

details of the system model, we will focus on the

measurement model from now on.

4. SURFACE RECONSTRUCTION IN 2D

Let us first consider the 2D case. Although the 2D

case might not seem relevant at first, there are actually

a number of applications for 2D surface reconstruction.

For example, LIDAR (light detection and ranging) sen-

sors are commonly used in robotics and allow the re-

construction of obstacles as surfaces in 2D [30].

4.1. Position Measurements

We consider a set of l 2 N landmarks on the surface.
For tracking these landmarks, we define the state vector

at time step k as

xk = [x
1,1
k ,x

1,2
k : : : ,xl,1k ,x

l,2
k ]

T 2 R2l,
where xa,bk represents the position of landmark a 2
f1, : : : , lg in dimension b 2 f1,2g at time step k. In this
case, the measurement model is trivially given by

ŷ
k
= I2l£2l ¢ xk + vk,

where I2l£2l 2 R2l£2l is the identity matrix, ŷk is the
measurement at time step k, and vk is additive Gaussian

noise with vk »N (0,Cvk). As the measurement equation
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Fig. 6. Reconstructed and true surfaces in 2D. (a) Before state augmentation. (b) After state augmentation.

is linear, a Kalman filter [15] can be used to perform

the measurement update. The surface sk at time step k

can be found by performing an interpolation through

the currently estimated positions of the landmarks with

any suitable interpolation method.

4.2. Depth Measurements

In addition to position measurements, we now want

to include depth measurements into the estimation pro-

cedure. For the moment, we assume a single depth cam-

era. Without loss of generality, we define it to be located

at the origin of the coordinate system and facing towards

[1,0]T. We further assume that the depth camera can

obtain r 2N depth measurements ẑ1k , : : : , ẑ
r
k at r differ-

ent angles ®1, : : : ,®r. These angles are typically evenly

spread across the depth camera’s field of view. Con-

sequently, the measurement equation has to calculate

the intersections of the lines at angles ®1, : : : ,®r with

the surface. Depending on the surface representation,

calculating this intersection can be very difficult. One

of the key ideas of our approach is to use polar coor-

dinates, which nicely circumvents this problem. If we

parameterize the surface as a function sk :R!R which
maps angles ® to distances sk(®), the intersection for

the lines at angles ®1, : : : ,®r are trivially calculated as

sk(®1), : : : ,sk(®r).

This yields the measurement equation

ẑk =

2664
ẑ1k

...

ẑrk

3775=
2664
sk(®1)

...

sk(®r)

3775+wk,
sk(®) = interpolate (pk;fk)(®),

pk = (atan2(x
1,2
k ,x

1,1
k ), : : : ,atan2(x

l,2
k ,x

l,1
k )),

fk =

Ã°°°°°
"
x1,1k

x1,2k

#°°°°° , : : : ,
°°°°°
"
xl,1k

xl,2k

#°°°°°
!

withmeasurements ẑ
k
andGaussiannoisewk »N (0,Cwk ).

Intuitively, the landmark coordinates (xi,1k ,x
i,2
k )1·i·l are

converted to polar coordinates with angular coordinates

pk and radial coordinates fk. From these polar coordi-

nates, the interpolation function sk(¢) is obtained. By
evaluating the interpolation function sk(¢) at the mea-
surement angles ®1, : : : ,®r, we calculate the measure-

ment, which is finally disturbed by noise wk.

Be aware that wk not only contains the stochastic

error from the noise of the depth camera but also a

modeling error as a result of the spline interpolation.

The equations for pk and fk follow from the conver-

sion of Cartesian into polar coordinates as described in

Sec. 3.2. The surface function sk is derived from xk by

interpolation, which is in general nonlinear in xk. Thus,

it is necessary to use a nonlinear filter to perform the

depth measurement update. For example, the UKF [14],

the S2KF (Smart Sampling Kalman Filter) [28], or the

Gaussian filter introduced in [12] may be used.

4.3. State Augmentation

While it is possible to use depth measurements as

described previously, the achievable accuracy is still

strongly limited by the number of position measure-

ments. The reason for this issue is the fact that the num-

ber of degrees of freedom of the reconstructed surface

is determined by the number of position measurements.

An example of this limitation is depicted in Fig. 6. Be-

fore state augmentation, all four markers are estimated

correctly, but the estimated surface is very different from

the true surface. After augmenting the state, additional

nodes give the surface more degrees of freedom and the

true surface can be approximated much more closely.

To improve accuracy, we augment the state by ad-

ditional control points that do not correspond to land-

marks. One may be tempted to augment the state by the

Cartesian coordinates of points in R2, which lie some-
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where on the surface, and to try to estimate their po-
sition. However, as these points do not produce mea-
surements originating from a fixed position on the sur-
face, their location cannot be uniquely determined from
the measurements (see Fig. 2). Any position in space
that leads to the same interpolated surface sk is just as
reasonable an estimate as any other. Consequently, the
problem is underdetermined and the state is not observ-
able.
The key idea is to introduce additional nodes not as

arbitrary points in R2 but in polar coordinates as d 2 N
depths at certain fixed angles '1, : : : ,'d. This yields an
augmented state

xk = (x
1,1
k ,x

1,2
k , : : : ,x

l,1
k ,x

l,2
k| {z }

landmarks

, x1,¤k , : : : ,x
d,¤
k| {z }

additional control points

)T 2R2l+d,

where x1,¤k : : :xd,¤k are the depths at angles '1, : : : ,'d.
These angles are not part of the state, as they are not
estimated but chosen as fixed values. Consequently the
depths x1,¤k : : :xd,¤k are uniquely determined by the shape
of the surface and, hence, the state is observable.
This poses the question how the angles '1, : : : ,'d

should be chosen. Simple approaches include random
angles inside the camera’s field of view or angles that
lie on an evenly spaced grid. More sophisticated ways
to choose appropriate angles are discussed in Sec. 6.1.
The measurement equation for positions becomes

ŷ
k
= [I2l£2l02l£d]xk + vk,

with identity matrix I2l£2l 2 R2l£2l and zero matrix

02l£d 2 R2l£d, which just ignores the additional control
points. The measurement equation for depth becomes

ẑk =

2664
ẑ1k

...

ẑrk

3775=
2664
sk(®1)

...

sk(®r)

3775+wk,
sk(®) = interpolate (pk;fk)(®),

pk = (atan2(x
1,2
k ,x

1,1
k ), : : : ,atan2(x

l,2
k ,x

l,1
k ),

'1, : : : ,'d),

fk =

Ã°°°°°
"
x1,1k

x1,2k

#°°°°° , : : : ,
°°°°°
"
xl,1k

xl,2k

#°°°°° ,x1,¤k , : : : ,xd,¤k
!
,

which now includes the additional control points in the
interpolation process. Once again, the landmark coordi-
nates (xi,1k ,x

i,2
k )1·i·l are converted to polar coordinates.

Together with the additional control points, whose polar
coordinates are (Ái,x

i,¤
k )1·i·d, they form a list of points

with angular coordinates pk and radial coordinates fk.
The surface sk(¢) is calculated by interpolation through
all of these points. When augmenting the state, the co-
variance matrix is augmented as well according to

CekÃ
·
Cek 02l£d
0d£2l ¾2add ¢ Id£d

¸
with uncertainty ¾add > 0.

Augmenting the state vector also involves augment-

ing the system model. For this purpose, we define an

augmented system function ak :R2l+d!R2l+d that maps
the augmented state at time step k to the augmented state

at time step k+1. The system noise uk is augmented to

2d+ l dimensions as well. The details of this augmen-

tation depend on the system model that is used for the

given application. In case of a random walk model, the

additional dimensions can be assumed to conform to a

random walk model as well.

5. SURFACE RECONSTRUCTION IN 3D

For many applications that are relevant in practice,

3D surface reconstruction is required. Fortunately, the

presented methods can easily be applied to a 3D setting

as well.

To accommodate for the third dimension, a few

changes are required. Positions in R2 are replaced with
positions in R3 and polar coordinates are replaced with
spherical coordinates. We also change the surface rep-

resentation to a function sk :R2!R that maps pairs of
angles (®,¯) to distances sk(®,¯). Once again we as-

sume a single depth camera. Without loss of generality,

it is located in the origin, its orientation is aligned with

the coordinate system, and it is facing towards [1,0,0]T.

These modifications yield the state representation

xk = [x
1,1
k ,x

1,2
k ,x

1,3
k , : : : ,x

l,1
k ,x

l,2
k ,x

l,3
k| {z }

landmarks

,

x1,¤k , : : : ,x
d,¤
k| {z }

additional control points

]T 2R3l+d,

where xa,bk represents the position of landmark a in

dimension b 2 f1,2,3g at time step k. The angles of the
additional control points ('1,μ1), : : : , ('d,μd) are once

again fixed and not part of the state. The measurement

equation for positions is now

ŷ
k
= [I3l£3l03l£d]xk + vk,

and the measurement model for depth is

ẑk =

2664
ẑ1k

...

ẑrk

3775=
2664
sk(®1,¯1)

...

sk(®r,¯r)

3775+wk,
sk(®,¯) = interpolate (pk;fk)(®,¯),

pk =

0B@
264 atan2(x1,2k ,x

1,1
k )

arcsin

Ã
x1,3k

k(x1,1k ,x1,2k ,x1,3k )Tk

!375 , : : : ,
264 atan2(xl,2k ,x

l,1
k )

arcsin

Ã
xl,3k

k(xl,1k ,xl,2k ,xl,3k )Tk

!375 ,
·
'1

μ1

¸
, : : : ,

·
'd

μd

¸1CA ,
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fk =

0B@
°°°°°°°
264x

1,1
k

x1,2k

x1,3k

375
°°°°°°° , : : : ,

°°°°°°°
264x

l,1
k

xl,2k

xl,3k

375
°°°°°°° ,x1,¤k , : : : ,xd,¤k

1CA ,
where (®1,¯1), : : : , (®r,¯r) are the angles at which depth

measurements are obtained. The expressions for pk and

fk follow from the conversion of Cartesian into spherical

coordinates as introduced in Sec. 3.2.

6. ENHANCEMENTS OF THE PROPOSED METHOD

In this section, we present several enhancements to

the proposed method. These enhancements may not be

absolutely necessary to apply the proposed methods but

improve their performance and allow their use in a wider

variety of applications.

6.1. Adaptive Addition of Nodes

When augmenting the state by adding control points,

one has to choose the angles where the additional

nodes should be located. In the 2D case, we need to

determine the angles '1, : : : ,'d and in the 3D case the

pairs of angles ('1,μ1), : : : , ('d,μd). Simple approaches

may involve picking these angles at random within the

view of the depth camera or choosing angles that lie on

a grid.

However, these choices are usually not optimal.

Additional control points should be added adaptively in

areas where the error is large or where the expected gain

in accuracy is high. One approach for the 2D case is to

calculate the RMSE (root mean square error) between

estimate and measurement

E¿k (®i) =

vuut1

¿

¿¡1X
j=0

(sk¡j(®i)¡ ẑik¡j)2

at time step k within a sliding window of length ¿ 2 N
for each angle ®1, : : : ,®r. A large RMSE suggests a

control point at this position may be desirable and thus

one should choose

'= argmax
®i ,1·i·r

(E¿k (®i))

as the angle of the new control point. This approach

can be generalized to the 3D case by using the error

function

E¿k (®i,¯i) =

vuut1

¿

¿¡1X
j=0

(sk¡j(®i,¯i)¡ ẑik¡j)2

and obtaining the new control point according to

(',μ) = argmax
(®i,¯i),1·i·r

(E¿k (®i,¯i)):

In our experiments, we found that adding nodes

successively tends to give better results than adding

several nodes at once.

6.2. Handling Missing Measurements

In a practical setting, both position and depth mea-

surements may be missing, for example when a tracked

landmark is occluded or when the depth sensor is unable

to provide a valid depth measurement at a certain angle.

It is possible to handle these cases with slight modifica-

tions to the proposed method. The measurement models

for both position and depth can simply omit the entries

of ŷ
k
and ẑk that could not be measured at time step k.

Consequently, even a surface that is never visible as a

whole at any given time step can be reconstructed over

time.

6.3. Angular Uncertainty

The approach, as introduced before, assumes that the

measurement angles ®1, : : : ,®r are exactly known and

that only the depth values at these angles are affected

by noise. This is a realistic assumption for certain depth

sensors like TOF-cameras, where depth measurements

are noisy but the measurement angles are fixed by the

optical properties of the camera. However, depth sensors

based on other measurement principles such as sensors

based on structured light may not fulfill this assumption.

It is possible to extend the presented approach to in-

clude uncertainty in the measurement angles in order to

more accurately model depth sensors whose measure-

ment angles are affected by non-negligible noise. For

this purpose, the measurement equation for depth has

to be modified to include non-additive noise terms. In

the 2D case, this yields

ẑk =

2664
ẑ1k

...

ẑrk

3775=
2664
sk(®1 + ±

1
k )

...

sk(®r+ ±
r
k)

3775+wk,
where [±1k , : : : ,±

r
k]
T »N (0,C±k) is zero-mean Gaussian

noise with covariance C±k. Nonlinear filters such as the

UKF can handle this kind of noise, typically by means

of augmenting the state with the non-additive noise

components. This method is also applicable to the 3D

case by changing the measurement equation to

ẑk =

2664
ẑ1k

...

ẑrk

3775=
2664
sk(®1 + ±

1
k ,¯1 + ´

1
k )

...

sk(®r+ ±
r
k,¯r+ ´

r
k)

3775+wk,
where [±1k , : : : ,±

r
k,´

1
k , : : : ,´

r
k]
T »N (0,C±,´k ) is zero-mean

Gaussian noise with covariance C
±,´
k .

6.4. More Than One Depth Camera

We previously assumed that our surface was ob-

served by just a single depth camera. This assump-

tion can be dropped by selecting a reference camera

and transforming the depth measurements of additional

cameras into the coordinate system of the reference

camera. The relation between the coordinate systems

20 JOURNAL OF ADVANCES IN INFORMATION FUSION VOL. 9, NO. 1 JUNE 2014



and the associated uncertainties can be obtained with

standard camera calibration procedures [31], [10].

If the cameras are observing the surface from suf-

ficiently different angles, angular uncertainty may be

introduced by the transformation into a different co-

ordinate system even if there was only uncertainty in

depth initially. If necessary, the angular uncertainty can

be handled as described in the previous section.

6.5. Choice of Interpolation or Approximation
Function

In Sec. 3.1, we introduced the commonly used inter-

polation method based on thin plate splines. However,

it should be noted that the proposed approach is not

tied to a particular interpolation method. Other inter-

polation schemes can easily be used by replacing the

interpolate(pk;fk) function with a different algorithm.

Overviews of possible interpolations methods can be

found in [1], [33], and [21]. Depending on the applica-

tion, the true shape of the surface may be more closely

approximated by a certain type of interpolation. Fur-

thermore, the choice of interpolation method influences

the scalability of the algorithm for a large number of

points m.

Furthermore, it is possible to consider a relaxed in-

terpolation problem and to require approximation only.

This means that f(p
i
) = fi does not need to hold ex-

actly, but we only require that f(p
i
)¼ fi. In the case of

thin plate splines this can easily be achieved by set-

ting A(i, i) = Á(0)+¸ for i= 1, : : : ,m in Algorithm 1,

where ¸ > 0 controls how strongly the problem is re-

laxed [27]. In our experiments, using an approximation

rather than an interpolation has proven to be more sta-

ble, because outliers that result from poorly estimated

points no longer affect the shape of the surface as much.

7. EVALUATION

In order to evaluate the proposed algorithm, we have

performed several simulations. All simulations use the

UKF [14] for nonlinear filtering. We use the following

constants:

² initial estimate xe0: uniformly random between 0 and 1
² initial covariance: Ce0 = 10 ¢ Iq£q
² initial variance for additional nodes: ¾2add = 10
² noise covariance for position: Cvk = 0:01 ¢ Iq£q
² noise covariance for depth: Cwk = 1 ¢ Ir£r
For interpolation, we apply the RBF algorithm de-

picted in Algorithm 1 and use a scaled version of the

thin plate spline as the RBF:

Á(x) =

½
(x=1000)2 log(x=1000), x > 0

0, x= 0
:

7.1. Simulations in 2D

As a performance measure, we want to determine

how similar the reconstructed surface is to the true sur-

face. For this purpose, we choose e 2 N evaluation an-
gles °1, : : : ,°e and define the RMSE Ek of the estimated

surface at time step k as

Ek =

vuut1

e

eX
i=1

(sk(°i)¡ struek (°i))
2,

where struek (¢) is the true surface in polar coordinates.
This can be interpreted as the error in depth, measured

from the camera towards the surface.

We consider a depth camera with a viewing angle of

60± and a resolution of r = 25 measurements at equidis-
tant measurement angles. There are e= 26 evaluation

angles, which are equidistant in a 72± angle around the
camera center, so we evaluate the extrapolation capabil-

ity of the algorithm as well.

7.1.1 Static Case:
The true surface that we try to estimate is given by

struek (°) = 11+2cos(9 ¢ °)

and does not change over time. Thus, we omit the pre-

diction step. This surface is the same as depicted in

Fig. 6. We start with l = 4 landmarks and no additional

nodes. From time step k = 10 to time step k = 20 we

add one node at each time step, so we have d = 11 ad-

ditional nodes afterwards. The angles '1, : : : ,'d are cho-

sen deterministically and are evenly distributed across

the camera’s view.

The simulation was carried out repeatedly and the

median and mean RMSE of the results of 100 Monte

Carlo runs are shown in Fig. 7a. As can clearly be seen,

the error is very high until time step k = 10, because the

surface description does not have a sufficient number of

degrees of freedom. After all additional nodes have been

inserted at k = 20, the estimate quickly converges to a

point where it has a consistently low error.

7.1.2 Dynamic Case:
We consider the same situation as in the static case

except for the fact that the surface is now time-variant.

The moving surface is given by

struek (°) = 11+2cos(9 ¢ °)+ sin(0:1 ¢ k)

and the system model is assumed to be unknown. Con-

sequently, we use a random walk model for prediction.

The system noise is modeled by the covariance matrix

C
»
k = diag(0:1, : : : ,0:1).

Once again, we performed 100 Monte Carlo runs

and calculated the mean and median RMSE. The results

are depicted in Fig. 7b. Overall the results look similar

to the static case, but the RMSE is generally higher as is

to be expected. The deviation between mean and median

shows that there are a few outliers, so estimation is not

quite as robust as in the static case.
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Fig. 7. Median and mean RMSE for each time step in the 2D case. Additional control points are inserted from time step k = 10 until

k = 20. (a) Static surface. (b) Dynamic surface.

Fig. 8. Reconstructed and true surfaces in 3D (static case). (a) Time step k = 9, without additional control points. (b) Time step k = 50, with

additional control points.

7.2. Simulations in 3D

Similar to the 2D case, we choose pairs of evaluation

angles (°1,±1), : : : , (°e,±e) and define the RMSE Ek at

time step k as

Ek =

vuut1

e

eX
i=1

(sk(°i,±i)¡ struek (°i,±i))
2,

where struek (¢, ¢) is the true surface in spherical coordi-
nates.

We assume a depth camera with a horizontal and ver-

tical viewing angle of 60± and a resolution of 25£ 25, so
r = 252 = 625. The measurement angles are located on

an equidistant 25£ 25 grid. For evaluation, we use ver-

tical and horizontal angle of 72± and 26£ 26 equidistant
evaluation angles.

7.2.1 Static Case:
Similar to the static 2D case, we consider a time-

invariant surface. In spherical coordinates, it is given by

struek (°,±) = 12+sin(7 ¢ °) + sin(7 ¢ ±):
Because the 3D surface has more degrees of freedom,

we start with l = 8 landmarks. Once again, we introduce

d = 11 additional control points from time step k = 10

to k = 20. The pairs of angles ('1,μ1), : : : , ('d,μd) are

evenly distributed across the field of view of the camera

in a deterministic way. The surface before and after

introducing additional nodes is depicted in Fig. 8. The
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Fig. 9. Absolute error in 3D (static case). (a) Time step k = 9, without additional control points. (b) Time step k = 50, with additional

control points.

Fig. 10. Median and mean RMSE for each time step in the 3D case. Additional control points are inserted from time step k = 10 until

k = 20. (a) Static case. (b) Dynamic case.

error between true and reconstructed surface can be seen

in Fig. 9.

Our results from 100 Monte Carlo runs are shown

in Fig. 10a. A comparison with Fig. 7a shows little

difference to the 2D case, although the range of values

is different because a different surface is reconstructed.

7.2.2 Dynamic Case:
For the dynamic 3D case we consider the time-

variant surface

struek (°,±) = 12+ sin(7 ¢ °)+ sin(7 ¢ ±) + sin(0:1 ¢ k):
The system model is a random walk model with system

noise C
»
k = diag(0:1, : : : ,0:1). Fig. 10b shows the results

from 100 Monte Carlo runs. This simulation demon-

strates that our methods works almost as well in a dy-

namic as in a static setting.

7.3. Adaptive Addition of Nodes

In this section, we evaluate the approach proposed

in Sec. 6.1 to add nodes adaptively in areas where the

modeling error is large. We consider the same scenario

as in the 2D static case (see Sec. 7.1.1). The sliding

window has a length of ¿ = 9. Three additional nodes

are inserted at time steps k = 10, k = 20 and k = 30.

For this simulation, we used an approximation with

relaxation value ¸= 10¡8 rather than an interpolation.
We performed 1000 Monte Carlo runs. The mean

and median RMSE is depicted in Fig. 11a. The increase

in accuracy is clearly visible each time a node is added.

Fig. 11b shows the angles, at which the additional nodes

are inserted. Obviously, these angles are not identical

in each run, but it is clearly visible that the three

additional nodes are mostly inserted at similar positions

(approximately ¡20±, 0±, and 20±).
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Fig. 11. Adaptive addition of nodes. Nodes are added at time steps k = 10, k = 20, and k = 30. (a) RMSE over time. (b) Angles where

nodes are added.

8. CONCLUSION

We have presented an algorithm for recursively com-

bining depth and position measurements for surface re-

construction considering uncertainties. Surface repre-

sentation as a spline allows for a compact state represen-

tation. The measurement equation for position is trivial

but deriving the measurement equation is challenging

if Cartesian coordinates are used. In order to solve this

issue, we have presented a way to use polar or spherical

coordinates, which simplifies the problem significantly.

Through evaluation by means of simulations we

have shown the viability of our approach in both 2D and

3D settings for static as well as dynamic surfaces. Our

experiments clearly demonstrate the benefits of adding

additional control points in order to better incorporate

depth measurements. We also demonstrate the viability

of the proposed method to adaptively choosing the

location of additional nodes. The considered examples

show how a much more accurate surface estimate can

be obtained by the combined use of position as well as

depth measurements.

Future research may include more sophisticated

ways to insert additional control points. A practical ap-

plication of the presented algorithm in a medical setting

is planned.
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